Part Number Hot Search : 
PACKBMQ P3484 C847B 96547 2SD882 MCZ33199 UPD16306 AD624C
Product Description
Full Text Search
 

To Download VN820SP-E Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 VN820-E / VN820B5-E VN820PT-E / VN820SO-E / VN820SP-E
HIGH SIDE DRIVER
Table 1. General Features
Type VN820-E VN820B5-E VN820PT-E VN820SO-E VN820SP-E RDS(on) IOUT VCC
Figure 1. Package
40 m
9A
36 V
10
1
PowerSO-10TM
P2PAK
PPAK
CMOS COMPATIBLE INPUT ON STATE OPEN LOAD DETECTION OFF STATE OPEN LOAD DETECTION SHORTED LOAD PROTECTION UNDERVOLTAGE AND OVERVOLTAGE SHUTDOWN PROTECTION AGAINST LOSS OF GROUND VERY LOW STAND-BY CURRENT

PENTAWATT
SO-16L
REVERSE BATTERY PROTECTION (*) IN COMPLIANCE WITH THE 2002/95/EC EUROPEAN DIRECTIVE
DESCRIPTION The VN820-E, VN820SP-E, VN820B5-E, VN820SO-E, VN820PT-E are monolithic devices made by using STMicroelectronics VIPower M0-3 Technology, intended for driving any kind of load with one side connected to ground. Active V CC pin voltage clamp protects the device against low energy spikes (see ISO7637 transient compatibility table). Table 2. Order Codes
Package PENTAWATT PowerSO-10TM P2PAK SO-16L PPAK
Note: (*) See application schematic at page 9.
Active current limitation combined with thermal shutdown and automatic restart protect the device against overload. The device detects open load condition both is on and off state. Output shorted to V CC is detected in the off state. Device automatically turns off in case of ground pin disconnection.
Tube VN820-E VN820SP-E VN820B5-E VN820SO-E VN820PT-E -
Tape and Reel
VN820SPTR-E VN820-B5TR-E VN820SOTR-E VN820PTTR-E
Rev. 3 February 2005 1/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
Figure 2. Block Diagram
VCC
VCC CLAMP
OVERVOLTAGE DETECTION UNDERVOLTAGE DETECTION
GND Power CLAMP
INPUT LOGIC
DRIVER OUTPUT CURRENT LIMITER
STATUS
ON STATE OPENLOAD DETECTION OVERTEMPERATURE DETECTION
OFF STATE OPENLOAD AND OUTPUT SHORTED TO VCC DETECTION
Table 3. Absolute Maximum Ratings
Symbol VCC - VCC - IGND IOUT - IOUT IIN ISTAT Parameter DC Supply Voltage Reverse DC Supply Voltage DC Reverse Ground Pin Current DC Output Current Reverse DC Output Current DC Input Current DC Status Current Electrostatic Discharge (Human Body Model: R=1.5K; C=100pF) VESD - INPUT - STATUS - OUTPUT - VCC Maximum Switching Energy (L=4mH; RL=0; Vbat=13.5V; Tjstart=150C; IL=13A) Maximum Switching Energy (L=3.7mH; RL=0; Vbat=13.5V; Tjstart=150C; IL=13A) Maximum Switching Energy (L=4.48mH; RL=0; Vbat=13.5V; Tjstart=150C; IL=13A) Power Dissipation TC=25C Junction Operating Temperature Case Operating Temperature Storage Temperature 4000 4000 5000 5000 481 481 438 526 65.8 65.8 65.8 Internally Limited - 40 to 150 - 55 to 150 8.3 65.8 V V V V mJ mJ mJ W C C C Value PowerSO-10 PENTAWATT P2PAK SO-16L PPAK 41 - 0.3 - 200 Internally Limited -9 +/- 10 +/- 10 Unit V V mA A A mA mA
EMAX EMAX EMAX Ptot Tj Tc Tstg
2/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
Figure 3. Configuration Diagram (Top View) & Suggested Connections for Unused and N.C. Pins
1 VCC OUTPUT OUTPUT OUTPUT OUTPUT OUTPUT OUTPUT 8 9 VCC
VCC N.C.
GROUND INPUT STATUS N.C. N.C.
6 7 8 9 10 11 5 4 3 2 1
16
OUTPUT OUTPUT OUTPUT OUTPUT OUTPUT
GND INPUT STATUS N.C. N.C. VCC
VCC
PowerSO-10
PPAK / P2PAK / PENTAWATT
SO-16L
Connection / Pin Status Floating X To Ground
N.C. X X
Output X
Input X Through 10K resistor
Figure 4. Current and Voltage Conventions
IS VF IIN INPUT ISTAT STATUS GND VIN VSTAT IGND VOUT OUTPUT IOUT VCC
VCC
Table 4. Thermal Data
Symbol Rthj-case Rthj-lead Rthj-amb Rthj-amb
(1) (2)
Parameter Thermal Resistance Junction-case Thermal Resistance Junction-lead Thermal Resistance Junction-ambient Thermal Resistance Junction-ambient Max Max Max Max
Value PowerSO-10 PENTAWATT P2PAK SO-16L PPAK 1.9 1.9 1.9 1.9 15 (1) (1) (1) 65 (2) 76.9 (1) 51.9 61.9 51.9 37 (3) 37 (3) 48 (4) 45 (3)
Unit C/W C/W C/W C/W
When mounted on a standard single-sided FR-4 board with 0.5cm2 of Cu (at least 35m thick). When mounted on FR4 printed circuit board with 0.5cm2 of Cu (at least 35 thick) connected to all VCC pins. (3) When mounted on a standard single-sided FR-4 board with 6cm2 of Cu (at least 35m thick). (4) When mounted on FR4 printed circuit board with 6cm2 of Cu (at least 35 thick) connected to all VCC pins.
3/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
ELECTRICAL CHARACTERISTICS (8VSymbol VCC VUSD VUSDhyst VOV RON Parameter Operating Supply Voltage Undervoltage Shut-down Undervoltage Shut-down hysteresis Overvoltage Shut-down On State Resistance IOUT=3A; Tj=25C; VCC>8V IOUT=3A; VCC>8V Off State; VCC=13V; VIN=VOUT=0V Off State; VCC=13V; VIN=VOUT=0V; 10 10 2 0 -75 36 40 80 25 20 3.5 50 0 5 3 Test Conditions Min. 5.5 3 Typ. 13 4 0.5 Max. 36 5.5 Unit V V V V m m A A mA A A A A
IS
Supply Current
Tj=25C
On State; VCC=13V; VIN=5V; IOUT=0A VIN=VOUT=0V VIN=0V; VOUT =3.5V VIN=VOUT=0V; Vcc=13V; Tj =125C VIN=VOUT=0V; Vcc=13V; Tj =25C
IL(off1) IL(off2) IL(off3) IL(off4)
Off State Output Current Off State Output Current Off State Output Current Off State Output Current
Table 6. Switching (VCC =13V)
Symbol td(on) td(off) dVOUT / dt(on) dVOUT / dt(off) Parameter Turn-on Delay Time Turn-off Delay Time Test Conditions RL=4.3 from VIN rising edge to VOUT =1.3V RL=4.3 from VIN falling edge to VOUT =11.7V RL=4.3 from VOUT=1.3 to VOUT =10.4V RL=4.3 from VOUT=11.7 to VOUT =1.3V Min. Typ. 30 30 See relative diagram See relative diagram Max. Unit s s
Turn-on Voltage Slope
V/s
Turn-off Voltage Slope
V/s
Table 7. Input Pin
Symbol VIL IIL VIH IIH VI(hyst) VICL Parameter Input Low Level Low Level Input Current Input High Level High Level Input Current Input Hysteresis Voltage Input Clamp Voltage IIN=1mA IIN=-1mA VIN=3.25V 0.5 6 6.8 -0.7 8 VIN=1.25V 1 3.25 10 Test Conditions Min. Typ. Max. 1.25 Unit V A V A V V V
4/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
ELECTRICAL CHARACTERISTICS (continued) Table 8. VCC - Output Diode
Symbol VF Parameter Forward on Voltage Test Conditions -IOUT=2A; Tj=150C Min. Typ. Max. 0.6 Unit V
Table 9. Status Pin
Symbol VSTAT ILSTAT CSTAT VSCL Parameter Test Conditions Status Low Output Voltage ISTAT =1.6mA Status Leakage Current Normal Operation VSTAT=5V Status Pin Input Normal Operation VSTAT=5V Capacitance ISTAT =1mA Status Clamp Voltage ISTAT =-1mA Min Typ Max 0.5 10 100 6 6.8 -0.7 8 Unit V A pF V V
Table 10. Protections (see note 1)
Symbol TTSD TR Thyst tSDL Ilim Vdemag Parameter Shut-down Temperature Reset Temperature Thermal Hysteresis Status delay in overload condition Current limitation Turn-off Output Clamp Voltage Test Conditions Min 150 135 7 Typ 175 15 20 9 5.5VTj>TTSD
Note: 1. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles.
Table 11. Openload Detection
Symbol IOL tDOL(on) Parameter Openload ON State Detection Threshold Openload ON State Detection Delay Openload OFF State Voltage Detection Threshold Openload Detection Delay at Turn Off Test Conditions VIN=5V IOUT =0A Min 70 Typ 150 Max 300 200 Unit mA s
VOL
VIN=0V
1.5
2.5
3.5
V s
tDOL(off)
1000
5/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
Figure 5.
OPEN LOAD STATUS TIMING (with external pull-up) IOUT < IOL VOUT > VOL VIN VIN OVERTEMP STATUS TIMING Tj > Tjsh
VSTAT
VSTAT
tDOL(off)
tDOL(on)
tSDL
tSDL
Table 12. Truth Table
CONDITIONS Normal Operation INPUT L H L H H L H L H L H L H L H OUTPUT L H L X X L L L L L L H H L H STATUS H H H (Tj < TTSD) H (Tj > TTSD) L H L X X H H L H H L
Current Limitation
Overtemperature Undervoltage Overvoltage Output Voltage > VOL Output Current < IOL
Figure 6. Switching time Waveforms
VOUTn 90% 80%
dVOUT/dt(on)
dVOUT/dt(off)
10% t VINn
td(on)
td(off)
t
6/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
Table 13. Electrical Transient Requirements On V CC Pin
ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 CLASS C E I C C C C C C I -25 V +25 V -25 V +25 V -4 V +26.5 V II -50 V +50 V -50 V +50 V -5 V +46.5 V TEST LEVELS III -75 V +75 V -100 V +75 V -6 V +66.5 V TEST LEVELS RESULTS II III C C C C C E C C C C C E IV -100 V +100 V -150 V +100 V -7 V +86.5 V Delays and Impedance 2 ms 10 0.2 ms 10 0.1 s 50 0.1 s 50 100 ms, 0.01 400 ms, 2
IV C C C C C E
CONTENTS All functions of the device are performed as designed after exposure to disturbance. One or more functions of the device is not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device.
7/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
Figure 7. Waveforms
NORMAL OPERATION INPUT LOAD VOLTAGE STATUS UNDERVOLTAGE VCC VUSD INPUT LOAD VOLTAGE STATUS undefined VUSDhyst
OVERVOLTAGE VCCVOL VOL VCC>VOV
OPEN LOAD without external pull-up INPUT LOAD VOLTAGE STATUS
Tj INPUT LOAD CURRENT STATUS
TTSD TR
OVERTEMPERATURE
8/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
Figure 8. Application Schematic
+5V
+5V
Rprot STATUS
VCC
Dld C Rprot INPUT OUTPUT
GND
RGND VGND DGND
GND PROTECTION REVERSE BATTERY
NETWORK
AGAINST
Solution 1: Resistor in the ground line (RGND only). This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1) RGND 600mV / (IS(on)max). 2) RGND (-VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device's datasheet. Power Dissipation in RGND (when VCC<0: during reverse battery situations) is: PD= (-VCC)2/RGND This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Please note that if the microprocessor ground is not common with the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift will vary depending on many devices are ON in the case of several high side drivers sharing the same RGND. If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2 (see below). Solution 2: A diode (DGND) in the ground line. A resistor (RGND=1k) should be inserted in parallel to DGND if the device will be driving an inductive load. This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of
the ground network will produce a shift (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network. Series resistor in INPUT and STATUS lines are also required to prevent that, during battery voltage transient, the current exceeds the Absolute Maximum Rating. Safest configuration for unused INPUT and STATUS pin is to leave them unconnected.
LOAD DUMP PROTECTION
Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds VCC max DC rating. The same applies if the device will be subject to transients on the VCC line that are greater than the ones shown in the ISO T/R 7637/1 table.
C I/Os PROTECTION:
If a ground protection network is used and negative transient are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent the C I/Os pins to latch-up. The value of these resistors is a compromise between the leakage current of C and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of C I/Os. -VCCpeak/Ilatchup Rprot (VOHC-VIH-VGND) / IIHmax Calculation example: For VCCpeak= - 100V and Ilatchup 20mA; VOHC 4.5V 5k Rprot 65k. Recommended Rprot value is 10k.
9/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
OPEN LOAD DETECTION IN OFF STATE
Off state open load detection requires an external pull-up resistor (RPU) connected between OUTPUT pin and a positive supply voltage (VPU) like the +5V line used to supply the microprocessor. The external resistor has to be selected according to the following requirements: 1) no false open load indication when load is connected: in this case we have to avoid VOUT to be higher than VOlmin; this results in the following condition VOUT=(VPU/(RL+RPU))RLFigure 9. Open Load detection in off state
V batt.
VPU
VCC RPU INPUT DRIVER + LOGIC OUT + R STATUS VOL RL IL(off2)
GROUND
10/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
Figure 10. Off State Output Current
IL(off1) (A)
5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 -50 -25 0 25 50 75 100 125 150 175
Figure 11. High Level Input Current
Iih (uA)
5 4.5
Off state Vcc=36V Vin=Vout=0V
Vin=3.25V
4 3.5 3 2.5 2 1.5 1 0.5 0 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
Tc (C)
Figure 12. Input Clamp Voltage
Vicl (V)
8 7.8
Figure 14. Status Leakage Current
Ilstat (uA)
0.05
Iin=1mA
7.6 7.4 7.2 7 6.8 6.6 6.4 6.2 6 -50 -25 0 25 50 75 100 125 150 175
0.04
Vstat=5V
0.03
0.02
0.01
0 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
Tc (C)
Figure 13. Status Low Output Voltage
Vstat (V)
0.8 0.7
Figure 15. Status Clamp Voltage
Vscl (V)
8 7.8
Istat=1.6mA
0.6
Istat=1mA
7.6 7.4
0.5 0.4 0.3 0.2
7.2 7 6.8 6.6 6.4
0.1 0 -50 -25 0 25 50 75 100 125 150 175
6.2 6 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
Tc (C)
11/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
Figure 16. On State Resistance Vs Tcase
Ron (mOhm)
100 90 80 70 60 50 40 30 20 10 0 -50 -25 0 25 50 75 100 125 150 175
Figure 17. On State Resistance Vs VCC
Ron (mOhm)
100 90
Iout=3A Vcc=8V; 13V; 36V
80
Tc= 150C
70 60 50 40 30 20 10 0 5 10 15 20 25 30 35 40
Tc= 25C
Tc= - 40C
Tc (C)
Vcc (V)
Figure 18. Openload On State Detection Threshold
Iol (mA)
150 140 130 120 110 100 90 80 70 60 50 -50 -25 0 25 50 75 100 125 150 175
Figure 20. Openload Off State Voltage Detection Threshold
Vol (V)
5 4.5
Vcc=13V Vin=5V
Vin=0V
4 3.5 3 2.5 2 1.5 1 0.5 0 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
Tc (C)
Figure 19. Input High Level
Vih (V)
3.6 3.4 3.2 3 2.8 2.6 2.4 2.2 2 -50 -25 0 25 50 75 100 125 150 175
Figure 21. Input Low Level
Vil (V)
2.6 2.4 2.2 2 1.8 1.6 1.4 1.2 1 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
Tc (C)
12/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
Figure 22. Turn-on Voltage Slope
dVout/dt(on) (V/ms)
1000 900 800 700 600 500 400 300 200 100 0 -50 -25 0 25 50 75 100 125 150 175
Figure 25. Turn-off Voltage Slope
dVout/dt(off) (V/ms)
1000 900
Vcc=13V Rl=4.3Ohm
800 700 600 500 400 300 200 100 0 -50
Vcc=13V Rl=4.3Ohm
-25
0
25
50
75
100
125
150
175
Tc (C)
Tc (C)
Figure 23. Overvoltage Shutdown
Vov (V)
50 48 46 44 42 40 38 36 34 32 30 -50 -25 0 25 50 75 100 125 150 175
Figure 26. ILIM Vs Tcase
Ilim (A)
20 18
Vcc=13V
16 14 12 10 8 6 4 2 0 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
Tc (C)
Figure 24. Input Hysteresis Voltage
Vhyst (V)
1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
13/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
Figure 27. PowerSO-10, P2PAK, PENTAWATT Maximum turn off current versus load inductance
ILMAX (A) 100
10
A B C
1 0.1 1 L(mH )
A = Single Pulse at TJstart=150C B= Repetitive pulse at T Jstart=100C C= Repetitive Pulse at T Jstart=125C Conditions: VCC=13.5V VIN, IL Demagnetization Demagnetization Demagnetization Values are generated with R L=0 In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C.
10
100
t
14/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
Figure 28. PPAK Maximum turn off current versus load inductance
ILMAX (A) 100
A
10
B C
1 0.1 1 L(mH)
A = Single Pulse at TJstart=150C B= Repetitive pulse at T Jstart=100C C= Repetitive Pulse at T Jstart=125C Conditions: VCC=13.5V VIN, IL Demagnetization Demagnetization Demagnetization Values are generated with R L=0 In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C.
10
100
t
15/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
Figure 29. SO-16L Maximum turn off current versus load inductance
ILM AX (A) 100
A B
10
C
1 0.1 1 L(mH)
A = Single Pulse at TJstart=150C B= Repetitive pulse at T Jstart=100C C= Repetitive Pulse at T Jstart=125C Conditions: VCC=13.5V VIN, IL Demagnetization Demagnetization Demagnetization Values are generated with R L=0 In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C.
10
100
t
16/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
SO-8 Thermal Data Figure 30. SO-8 PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm, Cu thickness=35m, Copper areas: 0.14cm2, 0.8cm2, 2cm2).
Figure 31. Rthj-amb Vs PCB copper area in open box free air condition
RTHj_amb (C/W)
SO-8 at 2 pins connected to TAB
110 105 100 95 90 85 80 75 70 0 0.5 1 1.5 2 2.5
PCB Cu heatsink area (cm^2)
17/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
SO-16L Thermal Data Figure 32. SO-16L PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 41mm x 48mm, PCB thickness=2mm, Cu thickness=35m, Copper areas: 0.5cm2, 6cm2).
Figure 33. SO-16L Rthj-amb Vs PCB copper area in open box free air condition
70 65 60 55 50 45 40
RTH j-amb (C/W)
0
1
2
3
4
5
6
7
PCB Cu heatsink area (cm^2)
18/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
P2PAK Thermal Data Figure 34. P2PAK PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 60mm x 60mm, PCB thickness=2mm, Cu thickness=35m, Copper areas: 0.97cm2, 8cm2).
Figure 35. P2PAK Rthj-amb Vs PCB copper area in open box free air condition
RTHj_amb (C/W)
55
Tj-Tamb=50C
50 45 40 35 30
0 2 4 6 8 10
PCB Cu heatsink area (cm^2)
19/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
PPAK Thermal Data Figure 36. PPAK PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 60mm x 60mm, PCB thickness=2mm, Cu thickness=35m, Copper areas: 0.44cm2, 8cm2).
Figure 37. Rthj-amb Vs PCB copper area in open box free air condition
RTHj_amb
(C/W)
90 80 70 60 50 40 30 20 10 0 0 2 4 6 8 10
PCB Cu heatsink area (cm^2)
20/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
PowerSO-10TM Thermal Data Figure 38. PowerSO-10TM PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm, Cu thickness=35m, Copper areas: from minimum pad lay-out to 8cm2).
Figure 39. Rthj-amb Vs PCB copper area in open box free air condition
RTHj_amb (C/W)
55
Tj-Tamb=50C
50 45 40 35 30
0 2 4 6 8 10
PCB Cu heatsink area (cm^2)
21/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
Figure 40. PowerSO-10 Thermal Impedance Junction Ambient Single Pulse
ZTH (C/W) 100
0.5 cm2 6 cm2
10
1
0.1
0.01 0.0001
0.001
0.01
0.1
1
10
100
1000
Time (s)
Figure 41. Thermal fitting model of a single channel HSD in PowerSO-10
Pulse calculation formula
Z TH = R TH + Z THtp ( 1 - )
where
= tp T
Table 14. Thermal Parameter
Area/island (cm2) R1 (C/W) R2 (C/W) R3( C/W) R4 (C/W) R5 (C/W) R6 (C/W) C1 (W.s/C) C2 (W.s/C) C3 (W.s/C) C4 (W.s/C) C5 (W.s/C) C6 (W.s/C) 0.5 0.04 0.25 0.25 0.8 12 37 0.0008 7.00E-03 0.015 0.3 0.75 3 6
Tj
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd
T_amb
22
5
22/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
Figure 42. SO-8 Thermal Impedance Junction Ambient Single Pulse
ZTH (C/W) 1000
100
0.5 cm2 2 cm2
10
1
0.1
0.01 0.0001 0.001 0.01 0.1 1 Time (s) 10 100 1000
Figure 43. Thermal fitting model of a single channel HSD in SO-8
Pulse calculation formula
Z TH = R TH + Z THtp ( 1 - )
where
= tp T
Table 15. Thermal Parameter
Tj
R1 R2 R3 R4 R5 R6 C1 C2 C3 C4 C5 C6
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd
T_amb
Area/island (cm2) (C/W) (C/W) ( C/W) (C/W) (C/W) (C/W) (W.s/C) (W.s/C) (W.s/C) (W.s/C) (W.s/C) (W.s/C)
0.5 0.05 0.8 3.5 21 16 58 0.006 2.60E-03 0.0075 0.045 0.35 1.05
2
28
2
23/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
Figure 44. PPAK Thermal Impedance Junction Ambient Single Pulse
ZT H (C/W) 1000
100
0.44 cm2 6 cm2
10
1
0.1
0.01 0.0001 0.001 0.01 0.1 1 Time (s) 10 100 1000
Figure 45. Thermal fitting model of a single channel HSD in PPAK
Pulse calculation formula
Z TH = R TH + Z THtp ( 1 - )
where
= tp T
Table 16. Thermal Parameter
Tj
Area/island (cm2) R1 (C/W) R2 (C/W) R3( C/W) R4 (C/W) R5 (C/W) R6 (C/W) C1 (W.s/C) C2 (W.s/C) C3 (W.s/C) C4 (W.s/C) C5 (W.s/C) C6 (W.s/C) 0.44 0.04 0.25 0.3 2 15 61 0.0008 0.007 0.02 0.3 0.45 0.8 6
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd
T_amb
24
5
24/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
Figure 46. P2PAK Thermal Impedance Junction Ambient Single Pulse
ZTH (C/W) 1000
100
0.97 cm2 6 cm 2
10
1
0.1
0.01 0.0001 0.001 0.01 0.1 1 T ime (s) 10 100 1000
Figure 47. Thermal fitting model of a single channel HSD in P2PAK
Pulse calculation formula
Z TH = R TH + Z THtp ( 1 - )
where
= tp T
Table 17. Thermal Parameter
Tj
Area/island (cm2) R1 (C/W) R2 (C/W) R3( C/W) R4 (C/W) R5 (C/W) R6 (C/W) C1 (W.s/C) C2 (W.s/C) C3 (W.s/C) C4 (W.s/C) C5 (W.s/C) C6 (W.s/C) 0.97 0.04 0.25 0.3 4 9 37 0.0008 0.007 0.015 0.4 2 3 6
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd
T_amb
22
5
25/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
Figure 48. SO-16L Thermal Impedance Junction Ambient Single Pulse
ZT H (C/W) 1000
100
0.5 cm2 6 cm 2
10
1
0.1
0.01 0.0001 0.001 0.01 0.1 1 T ime (s) 10 100 1000
Figure 49. Thermal fitting model of a single channel HSD in SO-16L
Pulse calculation formula
Z TH = R TH + Z THtp ( 1 - )
where
= tp T
Table 18. Thermal Parameter
Tj
Area/island (cm2) R1 (C/W) R2 (C/W) R3( C/W) R4 (C/W) R5 (C/W) R6 (C/W) C1 (W.s/C) C2 (W.s/C) C3 (W.s/C) C4 (W.s/C) C5 (W.s/C) C6 (W.s/C) 0.5 0.04 0.25 2.2 12 15 37 0.0008 7.00E-03 1.50E-02 0.14 1 3 6
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd
T_amb
22
5
26/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
PACKAGE MECHANICAL Table 19. PowerSO-10TM Mechanical Data
Symbol
A A (*) A1 B B (*) C C (*) D D1 E E2 E2 (*) E4 E4 (*) e F F (*) H H (*) h L L (*) a (*)
Note: (*) Muar only POA P013P
millimeters Min
3.35 3.4 0.00 0.40 0.37 0.35 0.23 9.40 7.40 9.30 7.20 7.30 5.90 5.90 1.27 1.25 1.20 13.80 13.85 0.50 1.20 0.80 0 2 1.80 1.10 8 8 1.35 1.40 14.40 14.35
Typ
Max
3.65 3.6 0.10 0.60 0.53 0.55 0.32 9.60 7.60 9.50 7.60 7.50 6.10 6.30
Figure 50. PowerSO-10TM Package Dimensions
B
0.10 A B
10
H
E
E2
E4
1
SEATING PLANE e
0.25
B
DETAIL "A"
A
C D = D1 = = = SEATING PLANE
h
A F A1
A1
L DETAIL "A"
P095A
27/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
PACKAGE MECHANICAL Table 20. SO-8 Mechanical Data
Symbol
A a1 a2 a3 b b1 C c1 D E e e3 F L M S L1 0.8 8 (max.) 1.2 3.8 0.4 4.8 5.8 1.27 3.81 4 1.27 0.6 0.65 0.35 0.19 0.25 45 (typ.) 5 6.2 0.1
millimeters Min Typ Max
1.75 0.25 1.65 0.85 0.48 0.25 0.5
Figure 51. SO-8 Package Dimensions
28/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
PACKAGE MECHANICAL Table 21. PENTAWATT (VERTICAL) Mechanical Data
Symbol
A C D D1 E F F1 G G1 H2 H3 L L1 L2 L3 L5 L6 L7 M M1 Diam. 3.65 2.6 15.1 6 4.5 4 3.85 10.05 17.85 15.75 21.4 22.5 3 15.8 6.6 2.4 1.2 0.35 0.8 1 3.2 6.6 3.4 6.8
millimeters Min Typ Max
4.8 1.37 2.8 1.35 0.55 1.05 1.4 3.6 7 10.4 10.4
Figure 52. PENTAWATT (VERTICAL) Package Dimensions
29/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
PACKAGE MECHANICAL Table 22. P2PAK Mechanical Data
Symbol
A A1 A2 b c c2 D D2 E E1 e e1 L L2 L3 L5 R V2 Package Weight 0 1.40 Gr (typ) 3.20 6.60 13.70 1.25 0.90 1.55 0.40 8 10.00 8.50 3.60 7.00 14.50 1.40 1.70 2.40
millimeters Min
4.30 2.40 0.03 0.80 0.45 1.17 8.95 8.00 10.40
Typ
Max
4.80 2.80 0.23 1.05 0.60 1.37 9.35
Figure 53. P2PAK Package Dimensions
P010R
30/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
PACKAGE MECHANICAL Table 23. PPAK Mechanical Data
Symbol
A A1 A2 B B2 C C2 D1 D E E1 e G G1 H L2 L4 R V2 Package Weight 0 Gr. 0.3 0.60 0.2 8 4.90 2.38 9.35 0.8 6.00 6.40 4.7 1.27 5.25 2.70 10.10 1.00 1.00
millimeters Min
2.20 0.90 0.03 0.40 5.20 0.45 0.48 5.1 6.20 6.60
Typ
Max
2.40 1.10 0.23 0.60 5.40 0.60 0.60
Figure 54. PPAK Package Dimensions
P032T1
31/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
Figure 55. PowerSO-10TM SUGGESTED PAD LAYOUT and TUBE SHIPMENT (no suffix)
14.6 - 14.9 10.8 - 11 6.30
A A C C
CASABLANCA
B
MUAR
0.67 - 0.73 1 2 3 4 5 10 9 8 7 6 0.54 - 0.6
B
9.5
All dimensions are in mm.
1.27
Base Q.ty Bulk Q.ty Tube length ( 0.5) Casablanca Muar 50 50 1000 1000 532 532
A
B
C ( 0.1) 0.8 0.8
10.4 16.4 4.9 17.2
Figure 56. PowerSO-10TM TAPE AND REEL SHIPMENT (suffix "TR") REEL DIMENSIONS
Base Q.ty Bulk Q.ty A (max) B (min) C ( 0.2) F G (+ 2 / -0) N (min) T (max)
600 600 330 1.5 13 20.2 24.4 60 30.4
All dimensions are in mm.
TAPE DIMENSIONS
According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb. 1986
Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing
W P0 ( 0.1) P D ( 0.1/-0) D1 (min) F ( 0.05) K (max) P1 ( 0.1)
24 4 24 1.5 1.5 11.5 6.5 2
End
All dimensions are in mm.
Start Top cover tape 500mm min Empty components pockets saled with cover tape. User direction of feed 500mm min No components Components No components
32/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
Figure 57. SO-8 TUBE SHIPMENT (no suffix)
B
C
A
Base Q.ty Bulk Q.ty Tube length ( 0.5) A B C ( 0.1)
All dimensions are in mm.
100 2000 532 3.2 6 0.6
Figure 58. SO-8 TAPE AND REEL SHIPMENT (suffix "TR") REEL DIMENSIONS
Base Q.ty Bulk Q.ty A (max) B (min) C ( 0.2) F G (+ 2 / -0) N (min) T (max)
2500 2500 330 1.5 13 20.2 12.4 60 18.4
All dimensions are in mm.
TAPE DIMENSIONS
According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986
Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing
W P0 ( 0.1) P D ( 0.1/-0) D1 (min) F ( 0.05) K (max) P1 ( 0.1)
12 4 8 1.5 1.5 5.5 4.5 2
End
All dimensions are in mm.
Start Top cover tape 500mm min Empty components pockets saled with cover tape. User direction of feed 500mm min No components Components No components
33/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
Figure 59. PENTAWAT TUBE SHIPMENT (no suffix)
B
C
Base Q.ty Bulk Q.ty Tube length ( 0.5) A B C ( 0.1)
All dimensions are in mm.
50 1000 532 18 33.1 1
A
34/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
Figure 60. P2PAK TUBE SHIPMENT (no suffix)
B
C
Base Q.ty Bulk Q.ty Tube length ( 0.5) A B C ( 0.1)
All dimensions are in mm.
50 1000 532 18 33.1 1
A
Figure 61. P2PAK TAPE AND REEL SHIPMENT (suffix "TR")
REEL DIMENSIONS
Bulk Q.ty A (max) B (min) C ( 0.2) F G (+ 2 / -0) N (min) T (max)
1000 330 1.5 13 20.2 24.4 60 30.4
All dimensions are in mm.
TAPE DIMENSIONS
According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986
Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing
W P0 ( 0.1) P D ( 0.1/-0) D1 (min) F ( 0.05) K (max) P1 ( 0.1)
24 4 16 1.5 1.5 11.5 6.5 2
End
All dimensions are in mm.
Start Top cover tape 500mm min Empty components pockets saled with cover tape. User direction of feed 500mm min No components Components No components
35/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
Figure 62. PPAK SUGGESTED PAD LAYOUT and TUBE SHIPMENT (no suffix)
A C
B
Base Q.ty Bulk Q.ty Tube length ( 0.5) A B C ( 0.1)
All dimensions are in mm.
75 3000 532 6 21.3 0.6
3
1.8
6.7
Figure 63. PPAK TAPE AND REEL SHIPMENT (suffix "TR")
REEL DIMENSIONS
Base Q.ty Bulk Q.ty A (max) B (min) C ( 0.2) F G (+ 2 / -0) N (min) T (max)
2500 2500 330 1.5 13 20.2 16.4 60 22.4
All dimensions are in mm.
TAPE DIMENSIONS
According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986
Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing
W P0 ( 0.1) P D ( 0.1/-0) D1 (min) F ( 0.05) K (max) P1 ( 0.1)
16 4 8 1.5 1.5 7.5 2.75 2
End
All dimensions are in mm.
Start Top cover tape 500mm min Empty components pockets saled with cover tape. User direction of feed 500mm min No components Components No components
36/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
REVISION HISTORY Table 24. Revision History
Date
Oct. 2004 Dec. 2004 Feb. 2005
Revision
1 2 3 - First Issue. - Minor changes.
Description of Changes
- Configuration Diagram (PowerSO-10) modification.
37/38
VN820-E / VN820SO-E / VN820SP-E / VN820B5-E / VN820PT-E
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners (c) 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
38/38


▲Up To Search▲   

 
Price & Availability of VN820SP-E

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X